Entscheidungstheorie

Entscheidungstheorie

SWS 4
ECTS 5
Sprache(n) Deutsch (Standard)
Englisch
Lehrform SU mit Praktikum
Angebot in jedem Sommersemester
Aufwand

Präsenzstudium: ca. 42 Std., Eigenstudium: ca. 108 Std.

Voraussetzungen

Grundlagen der Wirtschaftsinformatik, insbesondere folgende Gebiete aus den Bachelors Wirtschaftsinformatik:

  • Betriebswirtschaftslehre
  • Statistik und Operations Research
  • Wirtschaftsmathematik
Ziele

LERNZIELE: Die Studierenden sollen ausgewählte Methoden Entscheiungstheorie kennen und anwenden können, um diese in ihrer beruflichen Praxis beurteilen und anwenden zu können.

FACH- & METHODENKOMPETENZ:

  • Die Studierenden erwerben grundlegend Kenntnisse Inhalt und Konzepte der Entscheidungstheorie.
  • Die Studierenden erwerben Kenntnisse über Entscheidungsverhalten und -systeme.
  • Die Studierenden gewinnen Wissen über den Einsatz von Konzepten der Entscheidungstheorie im betrieblichen Umfeld.
  • Die Studierenden können Konzepte der Entscheidungstheorie fundiert beurteilen und anwenden.
  • Die Studierenden verfügen über die fachliche und sozial Fähigkeiten, um Entscheidungssituationen im betrieblichen Umfeld zu verstehen, zu steuern und voranzutreiben.
  • Die Studierenden können Projekte zum Einsatz von Decision Support Systeme planen, projektieren und managen.

ÜBERFACHLICHE KOMPETENZ:

  • Die Studierenden arbeiten in Projekten mit dem Fokus auf Entscheidungssituationen in Teams zusammen.
  • Die Studierenden erarbeiten sich Teilgebiete der Entscheidungstheorie selbständig und planen ihre Arbeitsabläufe eigenverantwortlich.
Inhalt
  • Grundlagen der Entscheidungstheorie und deren Einordnung in die betriebliche Praxis.
  • Entscheidung unter Unsicherheit
  • Entscheidung unter Risiko
  • Bayes'sche Entscheidungskonzepte
  • Grundlagen der Monte Carlo Simulation
  • Multi-Criteria Entscheidungssysteme
  • Grundlagen der Spieltheorie und nicht-kooperative Spiele
  • Bernoulli-Regel und Nutzenerwartungswerttheorie
  • Grenzen der Modellen zur rationalen Entscheidungstheorie
  • Grundlagen der Verhaltensökonomie
  • Soft Computing Verfahren (Fuzzy und Rough Sets)
  • u.a.
Medien und Methoden
  • Folien (Powerpoint, PDF) und Tafel/Whiteboard
  • Labor-PC mit Softwaretools zu Entscheidungssysteme, wie beispielsweise Expert Choice, Entwicklungsumgebungen wie etwa R-Project u.a.
Literatur
  • Akerlof, G. A. (1970), 'The Market for "Lemons": Quality Uncertainty and the Market Mechanism', Quarterly Journal of Economics 84(3), 488-500.
  • Bamberg, G., Coenenberg, A. G. and Krapp, M. (2019), Betriebswirtschaftliche Entscheidungslehre, Verlag Franz Vahlen, Muenchen.
  • Bischoff, M. (2002), 'Das Ziegenproblem: Sollte man sich umentscheiden?', Spektrum der Wissenschaft.
  • Brinkmeyer, D. and Müller, R. A. E. (1994), 'Entscheidungsunterstützung mit dem AHP', Zeitschrift für Agrarinformatik 5, 82-92.
  • Eisenführ, F. and Weber, M. (2003), Rationales Entscheiden, Springer, Berlin, Heidelberg.
  • Fehr, E. and Schmidt, K. M. (1999), 'A Theory of Fairness, Competition, and Cooperation', Quarterly Journal of Economics 114(3), 817-868.
  • Goebel, E. (2018), Entscheidungstheorie, UVK Verlag, Konstanz.
  • Grzymala-Busse, J. W. (2005), Rough set theory with applications to data mining, in M. G. Negoita and B. Reusch, ed., 'Real World Applications of Computational Intelligence', Springer, Berlin, pp. 221-244.
  • Holler, M. J., Illing, G. and Napel, S. (2019), Einführung in die Spieltheorie, Springer Gabler, Berlin, Heidelberg.
  • Kahneman, D. (2011), Thinking, fast and slow, Farrar, Straus and Giroux, New York.
  • Kühnapfel, J. B. (2021), Scoring und Nutzwertanalysen - Ein Leitfaden für die Praxis, Springer Gabler, Wiesbaden.
  • Laux, H., Gillenkirch, R. M. and Schenk-Mathes, H. Y. (2018), Entscheidungstheorie, Springer Gabler, Berlin, Heidelberg.
  • Munier, N. and Hontoria, E. (2021), Uses and Limitations of the AHP Method, Springer, Cham.
  • Saaty, T. L. (2008), 'Decision making with the analytic hierarchy process', International Journal of Services Sciences 1(1), 83-98.
  • Venables, W. N., Smith, D. M. and Team, R. C. (2023), 'An Introduction to R'.
  • Zimmermann, H. J. (1978), 'Fuzzy programming and linear programming with several objective functions', Fuzzy Sets and Systems 1(1), 45-55.
  • sowie weitere Literatur zu ausgewählten Themengebieten, die in der Veranstaltung bekanntgegeben wird.
Zuordnungen Curricula
SPO Fachgruppe Code ab Semester Prüfungsleistungen

IN Version 2010

Pflicht

IF-WI-M-10

1

benotete schriftliche Prüfung 90 Minuten

IS Version 2017

WPF Informatik und Wirtschaft

IF-S-M-I05

1

benotete schriftliche Prüfung 90 Minuten

IG Version 2019

EC: Fachliche u. persönliche Profilbildung

IG-ANM-0020

1

benotete schriftliche Prüfung 90 Minuten

IG Version 2019

SWE: Fachliche u. persönliche Profilbildung

IG-ANM-0020

1

benotete schriftliche Prüfung 90 Minuten

IG Version 2019

VCML: Fachliche u. persönliche Profilbildung

IG-ANM-0020

1

benotete schriftliche Prüfung 90 Minuten

IG Version 2024

EC: Fachliche u. persönliche Profilbildung

IG-ANM-0020

1

benotete schriftliche Prüfung 90 Minuten

IG Version 2024

SWE: Fachliche u. persönliche Profilbildung

IG-ANM-0020

1

benotete schriftliche Prüfung 90 Minuten

IG Version 2024

VCML: Fachliche u. persönliche Profilbildung

IG-ANM-0020

1

benotete schriftliche Prüfung 90 Minuten